Calcineurin splicing variant calcineurin Aβ1 improves cardiac function after myocardial infarction without inducing hypertrophy.

نویسندگان

  • Leanne E Felkin
  • Takuya Narita
  • Renée Germack
  • Yasunori Shintani
  • Kunihiko Takahashi
  • Padmini Sarathchandra
  • Marina M López-Olañeta
  • Jesús M Gómez-Salinero
  • Ken Suzuki
  • Paul J R Barton
  • Nadia Rosenthal
  • Enrique Lara-Pezzi
چکیده

BACKGROUND Calcineurin is a calcium-regulated phosphatase that plays a major role in cardiac hypertrophy. We previously described that alternative splicing of the calcineurin Aβ (CnAβ) gene generates the CnAβ1 isoform, with a unique C-terminal region that is different from the autoinhibitory domain present in all other CnA isoforms. In skeletal muscle, CnAβ1 is necessary for myoblast proliferation and stimulates regeneration, reducing fibrosis and accelerating the resolution of inflammation. Its role in the heart is currently unknown. METHODS AND RESULTS We generated transgenic mice overexpressing CnAβ1 in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. In contrast to previous studies using an artificially truncated calcineurin, CnAβ1 overexpression did not induce cardiac hypertrophy. Moreover, transgenic mice showed improved cardiac function and reduced scar formation after myocardial infarction, with reduced neutrophil and macrophage infiltration and decreased expression of proinflammatory cytokines. Immunoprecipitation and Western blot analysis showed interaction of CnAβ1 with the mTOR complex 2 and activation of the Akt/SGK cardioprotective pathway in a PI3K-independent manner. In addition, gene expression profiling revealed that CnAβ1 activated the transcription factor ATF4 downstream of the Akt/mTOR pathway to promote the amino acid biosynthesis program, to reduce protein catabolism, and to induce the antifibrotic and antiinflammatory factor growth differentiation factor 15, which protects the heart through Akt activation. CONCLUSIONS Calcineurin Aβ1 shows a unique mode of action that improves cardiac function after myocardial infarction, activating different cardioprotective pathways without inducing maladaptive hypertrophy. These features make CnAβ1 an attractive candidate for the development of future therapeutic approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of the calcineurin variant CnAβ1 after myocardial infarction reduces post-infarction ventricular remodelling by promoting infarct vascularization.

AIMS Ventricular remodelling following myocardial infarction progressively leads to loss of contractile capacity and heart failure. Although calcineurin promotes maladaptive cardiac hypertrophy, we recently showed that the calcineurin splicing variant, CnAβ1, has beneficial effects on the infarcted heart. However, whether this variant limits necrosis or improves remodelling is still unknown, pr...

متن کامل

Cyclosporin A inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats.

Calcineurin has recently been implicated as a mediator in the signaling pathways that transform intracellular calcium signals to the phenotype of myocardial hypertrophy. The present study was conducted to examine the effects of cyclosporin A (CsA), an inhibitor of calcineurin, on myocardial hypertrophy and remodeling during congestive heart failure (CHF) in rats. After ligation of the left coro...

متن کامل

MCIP1 overexpression suppresses left ventricular remodeling and sustains cardiac function after myocardial infarction.

Pathological remodeling of the left ventricle (LV) after myocardial infarction (MI) is a major cause of heart failure. Although cardiac hypertrophy after increased loading conditions has been recognized as a clinical risk factor for human heart failure, it is unknown whether post-MI hypertrophic remodeling of the myocardium is beneficial for cardiac function over time, nor which regulatory path...

متن کامل

Calcineurin in human heart hypertrophy.

BACKGROUND In animal models, increased signaling through the calcineurin pathway has been shown to be sufficient for the development of cardiac hypertrophy. Calcineurin activity has been reported to be elevated in the myocardium of patients with congestive heart failure. In contrast, few data are available about calcineurin activity in patients with pressure overload or cardiomyopathic hypertro...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 123 24  شماره 

صفحات  -

تاریخ انتشار 2011